Hetero-ring Lithiation of \boldsymbol{N}-Methyl-4-quinolone and \boldsymbol{N}-Methylquinoline-4thione

Mercedes Alvarez, ${ }^{\text {a }}$ Marisa Salas, ${ }^{\boldsymbol{a}}$ Lluis Rigat, ${ }^{\boldsymbol{a}}$ Ana de Veciana ${ }^{\boldsymbol{a}}$ and John A. Joule ${ }^{\text {*,b }}$
${ }^{a}$ Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona 08028, Spain
${ }^{\text {b }}$ Chemistry Department, Manchester University, Manchester M13 9PL, UK

Lithiation of 1-methyl-4-quinolone and 1-methylquinoline-4-thione with lithium diisopropylamide (LDA) at $-78^{\circ} \mathrm{C}$ takes place at C - 2 . The resulting lithio-species react with a variety of electrophiles to give 2-substituted-4-quinolones and -quinolines-4-thiones respectively. 1-Methylquinoline-4thione is easily converted into 1 -methyl-4-quinolone in protic solution.

We have shown ${ }^{1}$ that low temperature lithiation of 4-pyridones provides a route for the introduction of electrophiles at the 2-position ($\mathbf{1 \rightarrow 2 \rightarrow 3}$). 2-Acylated pyridones, thus obtained, can provide the means for the further construction of polycyclic heterocyclic quinones ${ }^{2}$ of relevance to the total synthesis of sea alkaloids. ${ }^{3}$

Encouraged by the pyridone results, and motivated by plans for the construction of sea alkaloids containing both quinoline and quinone moieties, we have now examined the lithiation of 1 -methyl-4-quinolone, 4 a , and thereby the synthesis of 2 -substituted quinolones. ${ }^{4}$ A difficulty, which could be largely avoided in the pyridone work, was the side-production of 'dimers', e.g. 5, in which lithiated heterocycle had added, in a

5

6

Michael sense, to unchanged pyridone, and it was anticipated that this might be a greater problem in the quinolone series, there being retention of a full benzene ring in a dimer to be derived comparably from a quinolone, $\mathbf{6}$ from $\mathbf{4 a}$.

Exchange at C-2 in quinoline in strong acid is considered to involve C-2-deprotonation of the 1-protoquinolinium cation. ${ }^{5}$ Lithio derivatives of quinoline, where the metal is at the heteroring 2-, 3-, and 4-positions were first described by Spatz ${ }^{6}$ and Gilman, ${ }^{7}$ produced via reaction of the corresponding bromoquinolines with butyllithium. The direct ortho \mathbf{C}-lithiation of 2-, 3 - and 4 -fluoro- ${ }^{8} 2$-, 3 - and 4 -chloroquinolines, ${ }^{9}$ adjacent to a 2 -pivaloylamino group, ${ }^{10}$ and to 2 -, 3 -, 4 -, 5 -, 6 -, 7 - and 8 dimethylaminocarbonyloxyquinolines ${ }^{11}$ have been described. Lithiations ortho to a 2-ethoxy ${ }^{12}$ and between the two oxygen substituents of 2,4 -dimethoxyquinoline ${ }^{13}$ have been recorded, but there does not seem to have been a description of metallation of a benzene-ring-alkoxyquinoline. Quinoline- and sub-stituted-quinoline-2-, 7- and 8 -aurio derivatives were prepared

	R^{1}	R^{2}	\mathbf{R}^{3}
a	0	H	H
b	S	H	H
c	0	H	D
d	0	H	Et
1 e	0	H	$\mathrm{PhCH}(\mathrm{OH})$
$\mathrm{R}^{1} \mathrm{f}$	0	H	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$
- ${ }^{R^{2} 9}$	0	H	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$
11 h	0	H	3 -pyridy--CH(OH)
	0	H	PhCO
Me J	0	H	3-pyridyl-co
4 k	0	H	$\mathrm{H}_{2} \mathrm{C}(\mathrm{OH})$
I	0	H	$\mathrm{PhC}(\mathrm{Me})(\mathrm{OH})$
m	0	$\mathrm{PhC}(\mathrm{Me})(\mathrm{OH})$	H
n	0	H	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$
0	0	H	Bu
p	S	H	$\mathrm{PhCH}(\mathrm{OH})$
q	S	H	3 -pyridyl-CH(OH)
r	S	H	$4-\mathrm{MeOC} 6 \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$
s	0	H	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CO}$

from the lithio species. ${ }^{14}$ Transformation of 3-lithioquinoline to the quinolin-3-yl tributylborate provided a means for 3-allylation. ${ }^{15}$ There are no reports of the lithiation of N -substituted 2- or 4-quinolones at any position.

Results

Attempts to lithiate N-methyl-4-quinolone with butyllithium were unsatisfactory; for example, after reaction at $-78^{\circ} \mathrm{C}$, and subsequent addition of benzaldehyde, only a trace of the substitution product 4 e was obtained, along with 7 and 40 ; the last two must result from a Michael-type nucleophilic addition of the organometallic reagent to the 'enone' of the quinolone $(\rightarrow 7)$, with subsequent dehydrogenation to afford the major product 40. The location of the butyl substituent in 40 followed from the singlet at $\delta 6.59$, corresponding to a quinolone $3-\mathrm{H}$, and in 7 from the multiplet at $\delta 4.10$ for one hydrogen and the two-hydrogen multiplet at higher field, $\delta 3.00$. Attempted use of methyllithium was also attended by addition problem, and neither sec-butyllithium or mesityllithium effected any deprotonation of the quinolone.

7

The reverse addition of quinolone to 3 equiv. of lithium diisopropylamide (LDA) at $-78^{\circ} \mathrm{C}$ was however efficient for the lithiation of N-methyl-4-quinolone, the excess of organometallic being necessary to minimise dimer formation (see below), and after quenching with $\mathrm{CD}_{3} \mathrm{OD}$, three products were obtained in proportions and structure determined by ${ }^{1} \mathrm{H}$ NMR and mass spectroscopic analysis: (i) mono-deuteriated quinolone, $\mathbf{4 c}$, which showed 63% deuteration, the location of the label being shown to be $\mathrm{C}-2$ by the remaining $3-\mathrm{H}$ signal, at δ 6.28 , now a singlet, (ii) dimer, $6,18 \%$ (see below), and (iii) dehydro dimer, $\mathbf{8}, 18 \%$ (see below). Deuteriated quinolone $\mathbf{4 c}$ was isolated in 15% yield by column chromatography of the crude reaction mixture.
In all reactions of the lithiated quinolone with electrophiles, some of the dimer 6 was always produced and this compound could be prepared in 74% yield by treatment of the quinolone with 0.5 mol equiv. of LDA. The regiochemistry of linking follows from (a) the residual quinolone $3-\mathrm{H}$ singlet at $\delta 6.12$ and (b) from the $\mathrm{CH}_{2} \mathrm{CH}$ unit of the dihydroquinolone portion represented by signals for the geminal pair at $\delta 2.91$ and 3.30 and for the methine at lower field, $\delta 5.01$.

8

The formation of fully aromatic 'dimer' 8 may involve oxidation of 6, but we suggest that a more likely source is via the dimerisation of an anion radical produced by addition of an electron (from $\operatorname{Pr}^{i}{ }_{2} \mathrm{~N}^{-}$) to starting quinolone; such processes have good precedent ${ }^{16}$ in pyridine chemistry, but not, so far as we are aware, in pyridone/quinolone chemistry.
The reaction of lithiated quinolone with typical electrophilic reagents proved variable in efficiency, and was always accompanied by dimer formation and consequent lower yields of substituted products. Attempted simple methylation gave rise to 2 -ethyl-1-methyl-4-quinolone 4 d presumably by a second alkylation at the activated methyl in 1,2-dimethyl-4-quinolone, the initial product; a comparable process has been observed before. ${ }^{1}$ Aromatic aldehydes reacted well, giving alcohols $\mathbf{4 e - h}$ in good yields, with the exception that from both 2 - and 4 methoxycarbonylbenzaldehydes very complex mixtures were obtained from which no useful products could be isolated. Two aromatic acid chlorides reacted less well to afford ketones 4 i and 4 j . Reaction with gaseous formaldehyde produced the expected alcohol $\mathbf{4 k}$.

Benzophenone reacted as anticipated to form $4 \mathbf{n}$; however, from acetophenone two products, $4 I$ and 4 m , were obtained the second of which proved to be the alcohol resulting from substitution at C-3. The key measurement which established the isomeric nature of 4 l and 4 m are the multiplicities of the heteroring carbons: in 4I C-2 and C-3 are singlet and doublet and in $\mathbf{4 m}$ they are doublet and singlet respectively. It is difficult to rationalise (a) the formation of a 3 -substituted product at all and (b) only with this particular electrophile. One possible explanation is that initial 2 -substitution assists a second lithiation, at C-3, that this is followed by a second alkylation and then by a dealkylation at the originally substituted C-2.

There appear to be no reported examples of the lithiation of pyridinethiones or quinolinethiones. In anticipation that the regiochemistry of lithiation might be different, 1 -methylquino-line-4-thione was prepared by thionation of the quinolone using Lawesson's reagent and its lithiation studied. Lithiation pro-
ceeded in acceptable yield and with three typical aromatic aldehydes, alcohols $\mathbf{4 p - r}$ were obtained.

The chemical shifts ($\delta 7.28$ and 7.41) of the hetero-ring protons in quinolinethione $\mathbf{4 b}$ differ by only 0.13 ppm ; this can be compared with the comparable protons in the quinolone 4a $[\delta 6.32(3-\mathrm{H})$ and $7.56(2-\mathrm{H})]$ where the difference was clearly of sufficient magnitude to allow unambiguous structural assignments to be made to substitution products. In order to assign the signals of the quinolinethione unequivocally, an NOE experiment was conducted and thus the proton giving the signal at $\delta 7.41$ shown to be adjacent to the N-methyl group.

Even with this knowledge of the shifts of the quinolinethione heterocyclic-ring protons it was clearly not feasible to utilise the chemical shift of the remaining ring proton alone to assign structures to the substitution products $\mathbf{4 p}-\mathbf{r}$, indeed for $\mathbf{4 p}$ (δ 7.72) and $4 \mathrm{r}(\delta 7.78)$ the shifts tended to suggest that lithiation and substitution had indeed taken place at C-3 (the residual hetero-ring proton signal in $4 q$ was obscured by other signals).

Assignments 4p-r were secured by the transformation of these products, simply by recrystallisation from dichloromethane, or column chromatography over silica, or by stirring solutions of $\mathbf{4 p}-\mathbf{r}$ in dichloromethane with silica gel, into the 2 -acylsubstituted quinolones $\mathbf{4 i}, \mathbf{4 j}$ and $\mathbf{4 s}$. These conversions must involve an oxidation, perhaps of a tautomer 9 generating 10 as an intermediate. The quinolinethione $\mathbf{4 b}$ itself was converted into the quinolone 4a simply by stirring in alcoholic solution with silica gel overnight at room temperature.

Experimental

M.p.s were determined in open capilliaries on a Büchi apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian XL-200 or Bruker AC-300 spectrometer. Chemical shifts are expressed in ppm downfield from TMS as internal standard, J values are given in Hz . IR spectra were taken with a Perkin-Elmer 1430 spectrophotometer, and only structurally significant absorptions ($v_{\text {max }} / \mathrm{cm}^{-1}$) are listed. UV spectra were determined using a Perkin-Elmer Lambda 5 spectrophotometer. Low-resolution mass spectra were measured on a Hewlett-Packard 5930A mass spectrometer and high-resolution measurements made on a MS-9 AEI mass spectrometer updated by VG. Column chromatography was carried out on silica gel $60(0.063-0.200 \mathrm{~mm})$, flash chromatography on silica gel $60(0.040-0.063 \mathrm{~mm})$, and TLC was carried out on silica gel 60 F254 ($0.063-0.200 \mathrm{~mm}$); the spots were located with iodoplatinate reagent or UV light. Purification of reagents and solvents was effected according to standard methods. All reactions were conducted under a nitrogen or argon atmosphere. Prior to concentration under reduced pressure, all organic extracts were dried over anhydrous magnesium or sodium sulfate. Microanalyses were performed on a Carlo-Erba 1106 analyser by the Instituto de Química Bio-Orgánica, Barcelona. ${ }^{13} \mathrm{C}$ NMR spectroscopic data for compounds $\mathbf{4 a - s , 6} 6$ and 7 are given in Table 1.

1-Methyl-4-quinolone 4a.-Methyl iodide ($16.8 \mathrm{~cm}^{3}, 270$ mmol) was added in one aliquot to a solution of 4-quinolone (4 $\mathrm{g}, 27.5 \mathrm{mmol}$) and $\mathrm{KOH}(2.28 \mathrm{~g}, 40.7 \mathrm{mmol})$ in methanol (12 cm^{3}) and the mixture was stirred for 2 h at room temperature. The precipitate was removed by filtration, the solvent was

Table $1{ }^{13} \mathrm{C}$ NMR ${ }^{a}$ Chemical shifts of compounds $4 \mathrm{a}-\mathrm{s}, 6$ and 7

	$\delta_{\text {c }}$															
Compd.	C-2	C-3	C-4	C-4a	C-5	C-6	C-7	C-8	C-8a	$\mathrm{N}-\mathrm{Me}$	Other					
4 a	143.76	109.52	178.08	126.66	123.46	126.31	132.01	115.32	140.37	40.19						
4b	136.82	125.42	194.88	133.95	130.79	125.78	132.98	116.14	133.95	41.66						
4 c	147.14	112.91	177.69	-	124.86	127.24	133.43	115.91	141.34	35.93						
4 d	156.24	109.95	178.09	126.35	123.40	126.55	132.21	115.41	141.97	33.73	12.58	$27.54{ }^{\text {b }}$				
4 e	156.25	112.78	177.95	125.26	123.78	127.89	132.64	115.60	139.88	35.40	74.74	126.00	126.12	128.81	$142.00^{\text {c }}$	
4 f	-	111.41	-	-	124.82	127.13	133.59	115.88	-	37.00	53.36	124.38	$131.64{ }^{\text {d }}$			
4g	156.47	110.30	178.89	125.75	124.01	126.01	132.75	115.65	142.21	34.82	55.00	73.22	114.13	127.78	131.77	$159.42^{\text {e }}$
4h	154.26	112.90	178.54	125.50	123.69	125.84	132.65	115.49	141.91	35.10	72.90	123.69	134.16	135.83	147.73	149.11^{f}
4 i	150.00	110.52	177.71	129.20	124.48	127.09	133.20	115.74	134.94	36.80	129.32	130.62	135.39	$141.65{ }^{\text {g }}$		
4j	148.59	111.30	177.71	133.78	124.08	127.10	133.46	115.86	171.78	36.86	124.68	130.68	137.60	151.90	155.39	$190.20^{\text {n }}$
$4 k^{i}$	154.37	109.41	178.50	125.46	124.04	125.88	132.87	115.61	-	34.10	$62.07{ }^{j}$					
41	157.42	111.72	178.31	124.77	122.89	127.08	132.26	115.56	142.22	36.84	34.45	124.31	125.64	128.72	146.27^{k}	
4 m	140.82	-	-	-	124.04	125.35	132.62	115.25	-	41.05	28.92	126.85	126.99	128.15 ${ }^{\text {I }}$		
4 n	157.60	115.58	177.91	125.10	123.03	125.48	133.13	115.78	142.34	38.04	81.65	127.21	127.52	128.50	$144.86{ }^{\text {m }}$	
40	150.65	144.66	162.48	122.49	121.95	124.99	130.39	119.97	140.10	29.05	13.62	22.38	31.54	$50.71{ }^{n}$		
4p	139.27	125.43	191.52	132.69	130.20	127.52	132.89	116.27	138.30	36.19	73.84	126.30	128.21	128.93	149.10°	
4 q	-	125.61	192.30	-	130.06	127.08	133.14	116.29	-	36.11	71.81	123.84	134.45	147.55	149.15^{p}	
4 r	138.12	125.33	191.02	131.21	130.01	126.73	132.80	116.27	133.25	35.95	55.13	72.94	114.19	127.94	$149.70^{\text {a }}$	
4 s	-	110.10	-	127.60	124.44	127.09	133.13	115.73	-	36.69	55.72	114.60	133.27 ${ }^{\text {r }}$			
6	150.76	113.08	177.93	126.43	124.22	126.77	132.90	115.69	142.83	38.24	34.26	41.26	61.85	$190.31^{\text {s }}$		
7	146.48	111.66	176.96	126.27	124.11	126.37	132.72	115.29	140.61	35.22						

${ }^{a} \delta$ Values are given in ppm downfield from $\mathrm{Me}_{4} \mathrm{Si}$. Measured in CDCl_{3} solution at 50.3 MHz . ${ }^{b}$ Signals due to $\mathrm{CH}_{2} \mathrm{CH}_{3}$. ${ }^{\text {c }}$ Signals due to CHOH , $4^{\prime}-\mathrm{CH}, 2^{\prime}$ - and $6^{\prime}-\mathrm{CH}, 3^{\prime}$ - and $5^{\prime}-\mathrm{CH}$, and $1^{\prime}-\mathrm{C}$. ${ }^{\text {d }}$ Signals due to $\mathrm{CH}-\mathrm{OH}, 2^{\prime}$ - and $6^{\prime}-\mathrm{CH}$, and $3^{\prime}-$ and $5^{\prime}-\mathrm{CH}$. ${ }^{e}$ Signals due to $\mathrm{OCH}_{3}, \mathrm{CHOH}^{\prime} 3^{\prime}-$ and $5^{\prime}-\mathrm{CH}, 2^{\prime}-$ and $6^{\prime}-\mathrm{CH}, 1^{\prime}-\mathrm{C}$, and $4^{\prime}-\mathrm{C} .{ }^{5}$ Signals due to $\mathrm{CHOH}, 5^{\prime}-\mathrm{CH}, 4^{\prime}-\mathrm{CH}, 3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{CH}$, and $2^{\prime}-\mathrm{CH} .{ }^{g}$ Signals due to $2^{\prime}-\mathrm{and} 6^{\prime}-\mathrm{CH}, 3^{\prime}-\mathrm{and}$ $5^{\prime}-\mathrm{CH}, 4^{\prime}-\mathrm{CH}$, and $1^{\prime}-\mathrm{C}$. ${ }^{\text {h }}$ Signals due to $5^{\prime}-\mathrm{CH}, 3^{\prime}-\mathrm{C}, 4^{\prime}-\mathrm{CH}, 6^{\prime}-\mathrm{CH}, 2^{\prime}-\mathrm{CH}$, and $\mathrm{C}=\mathrm{O}^{i}{ }^{i}$ Measured in $\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$. ${ }^{j}$ Signal due to $\mathrm{CH} \mathrm{OH}_{2} \mathrm{OH}$. ${ }^{k}$ Signals due to $\mathrm{CH}_{3}, 2^{\prime}$ - and $6^{\prime}-\mathrm{CH}, 4^{\prime}-\mathrm{CH}, 3^{\prime}-$ and $5^{\prime}-\mathrm{CH}$, and $1^{\prime}-\mathrm{C}$. ${ }^{l}$ Signals due to $\mathrm{CH}_{3}, 2^{\prime}-$ and $6^{\prime}-\mathrm{CH}, 4^{\prime}-\mathrm{CH}$, and 3-and $5^{\prime}-\mathrm{CH}$. ${ }^{m}$ Signals due to $\mathrm{COH}, 2^{\prime}$ - and $6^{\prime}-\mathrm{CH}, 4^{\prime}-\mathrm{CH}, 3^{\prime}$ - and $5^{\prime}-\mathrm{CH}$, and $1^{\prime}-\mathrm{C}$. ${ }^{n}$ Signals due to $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{\circ}{ }^{\circ}$ Signals due to $\mathrm{CHOH}, 2^{\prime}-$ and $6^{\prime}-\mathrm{CH}, 4^{\prime}-\mathrm{CH}, 3^{\prime}-\mathrm{and}$ $5^{\prime}-\mathrm{CH}$, and $1^{\prime}-\mathrm{C} .{ }^{p}$ Signals due to $\mathrm{CHOH}, 5^{\prime}-\mathrm{CH}, 4^{\prime}-\mathrm{CH}, 6^{\prime}-\mathrm{CH}$, and $2^{\prime}-\mathrm{CH} .{ }^{9}$ Signals due to $\mathrm{OCH}_{3}, \mathrm{CHOH}, 3^{\prime}-$ and $5^{\prime}-\mathrm{CH}, 2^{\prime}-$ and $6^{\prime}-\mathrm{CH}$, and $1^{\prime}-\mathrm{C}$. ${ }^{\prime}$ Signals due to $\mathrm{OCH}_{3}, 3^{\prime}$ - and $5^{\prime}-\mathrm{CH}$, and $2^{\prime}-$ and $6^{\prime}-\mathrm{C}$. ${ }^{s}$ Signals due to $\mathrm{N}^{\prime}-\mathrm{CH}_{3}, 3^{\prime}-\mathrm{CH}_{2}, 2^{\prime}-\mathrm{CH}$, and $4^{\prime}-\mathrm{C}$.
evaporated from filtrate, and the resulting residue was digested with chloroform. The chloroform solution was evaporated and the residue was purified by flash chromatography, elution with chloroform affording 1-methyl-4-quinolone $\mathbf{4 a}(4 \mathrm{~g}, 88 \%$), m.p. $150-151^{\circ} \mathrm{C}$ (from $\mathrm{Me}_{2} \mathrm{CO} / \operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{O}$) (lit., ${ }^{17} \quad 151-152^{\circ} \mathrm{C}$) (b.p. $185-185^{\circ} \mathrm{C}$ at 0.2 mmHg$), v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2990,1625,1585$ and 1550; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 6.32(1 \mathrm{H}$, d, $J 7.7,3-\mathrm{H}), 7.41(1 \mathrm{H}, \mathrm{dd}, J 8.0,7.5,6-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{d}, J 8.0$ $8-\mathrm{H}), 7.56(1 \mathrm{H}, \mathrm{d}, J 7.7,2-\mathrm{H}), 7.71(1 \mathrm{H}$, ddd, $J 8.0,7.5,1.6,7-\mathrm{H})$, and $8.47(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.65-\mathrm{H}) ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 219,237$, 323 and $337(\log \varepsilon 4.42,4.36,4.19$ and 4.22); m / z (EI, \%) 160 (20), 159 ($\mathrm{M}^{\bullet+}, 100$), 131 (90), 130 (61), 116 (11), 90 (13), 89 (20) and 77 (25).

1-Methylquinoline-4-thione $\mathbf{4 b}$.-A solution of 1-methyl-4quinolone $4 \mathrm{a}(1.01 \mathrm{~g}, 6.3 \mathrm{mmol})$ and Lawesson's reagent $(1.25 \mathrm{~g}$, 3.1 mmol) in dry pyridine ($50 \mathrm{~cm}^{3}$) was refluxed for 3 h with stirring. The solvent was removed under reduced pressure and the residue was digested with chloroform ($25 \mathrm{~cm}^{3}$). The organic solution was evaporated and the residue was purified by flash chromatography eluting with chloroform to give a yellow solid $(1.07 \mathrm{~g}, 97 \%)$ identified as the quinolinethione, m.p. $210-212^{\circ} \mathrm{C}$ (from $\mathrm{Me}_{2} \mathrm{CO} / \mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{O}$) (lit., ${ }^{18} \quad 209-210^{\circ} \mathrm{C}$), $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1590,1525 and $1505 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $7.28(1 \mathrm{H}, \mathrm{d}, J 7.0,3-\mathrm{H}), 7.41(1 \mathrm{H}, \mathrm{d}, J 7.0,2-\mathrm{H}), 7.43-7.52(2 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}$ and $8-\mathrm{H}$), $7.71(1 \mathrm{H}$, ddd, $J 8.0,7.5$ and $1.5,7-\mathrm{H}$) and 8.98 ($1 \mathrm{H}, \mathrm{dd}, J 8.0,1.5,5-\mathrm{H})$; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 259,274,282$ and 419 $(\log \varepsilon 3.73,3.74,3.75$ and 4.22$) ; m / z(\mathrm{El}, \%) 176(12), 175\left(\mathbf{M}^{+}\right.$, 100), 131 (43), 130 (18) and 98 (14).

Typical Procedure for Lithiation of 1-Methyl-4-quinolone and 1-Methylquinoline-4-thione and Reaction of 2-Lithio-1-methyl-4-quinolone and 2-Lithio-1-methylquinoline-4-thione with Electrophiles; Synthesis of Compounds 4d-s and 6.-Diisopropylamine ($0.24 \mathrm{~cm}^{3}, 1.86 \mathrm{mmol}$) was added by syringe to a
solution of $\mathrm{BuLi}\left(1.16 \mathrm{~cm}^{3}, 1.86 \mathrm{mmol}\right)$ in dry tetrahydrofuran (THF) $\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ and the solution was stirred at this temperature for 30 min . A solution of 1 -methyl-4-quinoline $\mathbf{4 a}$ ($100 \mathrm{mg}, 0.62 \mathrm{mmol}$) in THF ($20 \mathrm{~cm}^{3}$) was added very slowly, the mixture stirred for a further 30 min at $-78^{\circ} \mathrm{C}$, and then a solution of the electrophile in THF was added. The reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and then for 1 h at room temperature. Aqueous ammonium chloride was added and the organic solvent removed under reduced pressure. The resulting aqueous solution was extracted with methylene dichloride and the resulting organic solution dried and evaporated to afford a residue which was purified as described.

1-Methyl-2-(1-methyl-4-oxo-1,2,3,4-tetrahydro-2-quinolyl)-4quinolone 6. From LDA (0.62 mmol) and quinolone 4a (1.25 mmol) was obtained a crude yellow solid (193 mg). Purification by column chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($9: 1$), gave the dimer $6\left(157 \mathrm{mg}, 74 \%\right.$), m.p. $257-258{ }^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), v_{\max }$ (film) $/ \mathrm{cm}^{-1} 1675,1605,1570$ and $1510 ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $2.91\left(1 \mathrm{H}, \mathrm{dd}, J 16.0,5.0,3^{\prime}-\mathrm{H}\right), 3.03(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}^{\prime} \mathrm{CH}_{3}\right), 3.30\left(1 \mathrm{H}, \mathrm{dd}, J 16.0,7.0,3^{\prime}-\mathrm{H}\right), 3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, 5.01 ($\left.1 \mathrm{H}, \mathrm{dd}, J 7.0,5.0,2^{\prime}-\mathrm{H}\right), 6.12(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.78(1 \mathrm{H}, \mathrm{ddd}, J$ 8.5, 7.0, 1.0, $6^{\prime}-\mathrm{H}$), 7.37 (1 H , ddd, $J 8.5,7.0,1.0,6-\mathrm{H}$), $7.42-7.50$ $\left(2 \mathrm{H}, \mathrm{m}, 7^{\prime}-\mathrm{H}\right.$ and $\left.8^{\prime}-\mathrm{H}\right), 7.52(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.0,8-\mathrm{H}), 7.68(1 \mathrm{H}$, ddd, $J 8.0,7.0,2.0,7-\mathrm{H}), 7.79\left(1 \mathrm{H}\right.$, dd, $\left.J 8.5,2.0,5^{\prime}-\mathrm{H}\right)$ and 8.35 $(1 \mathrm{H}, \mathrm{dd}, J 8.5,2.0,5-\mathrm{H}) ; \lambda_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{nm} 325,339$ and 382 ($\log \varepsilon 4.12,4.23$ and 3.65); $m / z(\mathrm{El}, \%) 318$ ($\left.\mathrm{M}^{++}, 10\right), 227$ (43), 160 (60), 159 (100), 131 (57), 130 (37), 89 (22), 77 (27), 75 (21), 73 (23) and 40 (26) (Found: C, 74.4; H, 5.6; N, 8.6\%; M ${ }^{+}, 318.1369$. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.4 ; \mathrm{H}, 5.7 ; \mathrm{N}, 8.8 \% ; M, 318.1368$).

2-Ethyl-1-methyl-4-quinolone 4d. From LDA (1.25 mmol), quinolone $4 \mathrm{a}(0.62 \mathrm{mmol})$, then iodomethane (3.1 mmol), and after purification by column chromatography eluting with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (94:6), 2-ethyl-1-methyl-4-quinolone $4 \mathrm{~d}(74 \mathrm{mg}$, 64%) was isolated, m.p. $148-150{ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane), $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-3} 1620$ and $1590 ; \delta_{\mathbf{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32(3$
$\left.\mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.76\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 3.74(3 \mathrm{H}, \mathrm{s}$, NCH_{3}), 6.27 ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$), 7.37 (1 H , ddd, $J 8.0,7.5,1.5,6-\mathrm{H}$), 7.51 ($1 \mathrm{H}, \mathrm{dd}, J 8.5,1.5,8-\mathrm{H}$), 7.67 (1 H , ddd, $J 8.5,7.5,1.7,7-\mathrm{H}$) and $8.44(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.7,5-\mathrm{H}) ; \lambda_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{nm} 243,288,324$ and $338(\log \varepsilon 4.19,3.20,4.02$ and 4.09$) ; m / z(\mathrm{Cl}, \%) 205(\mathrm{M}+$ $\left.\mathrm{H}_{4} \mathrm{~N}^{+}, 100\right), 188(\mathrm{M}+1,74)$ and 173 (9) (Found: C, 74.1; H, 6.7; $\mathrm{N}, 7.2 . \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 73.5 ; \mathrm{H}, 7.2 ; \mathrm{N}, 7.1 \%$).

2-(α-Hydroxybenzyl)-1-methyl-4-quinolone 4e. From LDA (1.25 mmol) and quinolone $4 \mathrm{a}(0.62 \mathrm{mmol})$ then benzaldehyde (3.1 mmol), and after column chromatography on eluting with chloroform, dimer $6(25 \mathrm{mg}, 12 \%)$ and 2-(α-hydroxybenzyl)-1-methyl-4-quinolone $\mathbf{4 e}(115 \mathrm{mg}, 71 \%)$ were obtained; the alcohol had m.p. $177-178{ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane), $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3220,1620,1600,1560$ and $1500 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.44$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}$), $5.88(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.42(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{dd}$, $J 8.2,8-\mathrm{H}), 7.20-7.60(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.27(1 \mathrm{H}, \mathrm{dd}, J 8.2,1.5$, $5-\mathrm{H}) ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 213,242,325$ and $327(\log \varepsilon 4.45,4.44$, 4.06 and 4.10$) ; m / z(E l, \%) 266(21), 265\left(\mathrm{M}^{+}, 100\right), 248(20), 159$ (53), 130 (23), 107 (23), 105 (34), 97 (28), 91 (75), 89 (35), 79 (38) and 77 (81) (Found: C, 76.6; $\mathrm{H}, 5.6 ; \mathrm{N}, 5.0 . \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires C, 77.0; H, 5.7; N, 5.3).
2-(α-Hydroxy-4-nitrobenzyl)-1-methyl-4-quinolone 4f. From LDA (2.13 mmol) and quinolone $4 \mathrm{a}(0.71 \mathrm{mmol})$ then 4 nitrobenzaldehyde (1.29 mmol) and after chromatographic purification, eluting with methylene dichloride, 4-nitrobenzyl alcohol (187 mg) was obtained, and then with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($95: 5$) benzylic alcohol $4 \mathrm{f}\left(69 \mathrm{mg}, 36 \%\right.$) was isolated, $\delta_{\mathrm{H}}(200$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.80(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 5.31(1 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}), 6.31(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.50(1 \mathrm{H}$, ddd, $J 8.0,7.5,0.9,6-\mathrm{H}), 7.59$ ($1 \mathrm{H}, \mathrm{dd}, J 8.8,0.9,8-\mathrm{H}$), 7.81 (1 H , ddd, $J 8.8,7.5,1.6,7-\mathrm{H}$), 8.18 $\left(2 \mathrm{H}, \mathrm{d}, J 8.9,2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 8.39\left(2 \mathrm{H}, \mathrm{d}, J 8.9,3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right)$ and $8.49(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.6,5-\mathrm{H}) ; \lambda_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 270$ and 333 ($\log \varepsilon 4.03$ and 3.62); $m / z(\mathrm{El}, \%) 310\left(\mathrm{M}^{{ }^{+}}, 1.2\right), 308$ (44), 295 (14), 279 (23), 233 (29), 192 (44), 191 (74), 167 (100), 165 (50), 152 (27), 150 (30), 132 (24), 120 (25), 115 (24), 92 (27) and 76 (79) (Found: C, 63.8; H, 4.9; N, 8.4. $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires C, 63.7; H, 5.0; N, 8.7\%).
2-(α-Hydroxy-4-methoxybenzyl)-1-methyl-4-quinolone 4 g and 1-methyl-2-(1-methyl-4-oxo-2-quinolyl)-4-quinolone 8. From LDA (2.52 mmol) and quinolone $4 \mathrm{a}(0.84 \mathrm{mmol})$ then $4-$ methoxybenzaldehyde (3.33 mmol) and after column chromatography, elution with methylene dichloride gave 1-methyl-2-(1-methyl-4-oxo-2-quinolyl)-4-quinolone 8 ($23 \mathrm{mg}, 8 \%$) m.p. 234 $236^{\circ} \mathrm{C}$ (from CHCl_{3}-ether), $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1620,1600$ and 1495; $\delta_{\mathbf{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.64\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right), 6.43(2 \mathrm{H}$, $\mathrm{s}, 2 \times 3-\mathrm{H}), 7.47(2 \mathrm{H}, \mathrm{dd}, J 8.0,7.2,2 \times 6-\mathrm{H}), 7.60(2 \mathrm{H}, \mathrm{d}, J 8.5$, $2 \times 8-\mathrm{H}), 7.80(2 \mathrm{H}$, ddd, $J 8.5,7.2,1.4,2 \times 7-\mathrm{H})$ and $8.52(2 \mathrm{H}$, $\mathrm{dd}, J 8.0,1.4,2 \times 5-\mathrm{H}) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 214,239,324$ and 337 $(\log \varepsilon 4.43,4.47,4.09$ and 4.12$) ; m / z(E l, \%) 317$ (24), 316 (M^{++}, 100), 301 (90), 184 (90), 158 (25), 154 (22), 144 (22), 132 (27), 77 (53) and 57 (36) (Found: C, 71.5; H, 4.95; N, 8.2\%; M $^{+}, 316.1222$. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 71.84 ; \mathrm{H}, 5.42 ; \mathrm{N}, 8.37 \%$; $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 316.1212$), elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{MeOH}(98: 2)$ gave benzylic alcohol $\mathbf{4 g}(35 \mathrm{mg}, 14 \%$), m.p. $231-$ $233{ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane), $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3120,1625,1580$ and $1520 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) 3.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.86(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.66(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.90(2$ $\mathrm{H}, \mathrm{d}, J 6.8,3^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 7.29\left(2 \mathrm{H}, \mathrm{d}, J 6.8,2^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right)$, $7.44(1 \mathrm{H}, \mathrm{dd}, J 8.0,7.0,6-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{d}, J 8.7,8-\mathrm{H}), 7.69(1 \mathrm{H}$, ddd, $J 8.7,7.0,1.5,7-\mathrm{H}), 8.41$ ($1 \mathrm{H}, \mathrm{dd}, J 8.0,1.5,5-\mathrm{H}$); $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 211,239$ and $324(\log \varepsilon 3.72,3.70$ and 3.37$)$; $m / z(\mathrm{El}, \%) 296(14), 295\left(\mathrm{M}^{+}, 30\right), 159(100), 137(32), 132(20)$, 131 (20), 130 (23), 117 (20), 109 (22), 89 (24) and 77 (37) (Found: $\mathrm{C}, 70.2 ; \mathrm{H}, 5.45 ; \mathrm{N}, 4.8 . \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3} \cdot 0.6 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 70.6 ; \mathrm{H}$, $6.0 ; \mathrm{N}, 4.6 \%$), and finally, elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5)$ afforded 4-methoxybenzyl alcohol (21 mg).
2-[Hydroxy(3-pyridyl)methyl]-1-methyl-4-quinolone 4h. From LDA (1.76 mmol) and quinolone 4a $(1.42 \mathrm{mmol})$
then nicotinaldehyde (4.36 mmol) and after column chromatography, on elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (95:5), compound 4h ($228 \mathrm{mg}, 60 \%$) was obtained, m.p. $181-182^{\circ} \mathrm{C}$ (from CHCl_{3}) $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3200,1620,1580,1550,1480$ and 1450 ; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 5.91(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.36$ $(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.05(1 \mathrm{H}, \mathrm{d}, J 8.5,8-\mathrm{H}), 7.25-7.52(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 7-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 7.78\left(1 \mathrm{H}, \mathrm{d}, J 7.9,4^{\prime}-\mathrm{H}\right), 8.26(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and $1.7,5-$ H), $8.54\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.1,6^{\prime}-\mathrm{H}\right)$ and $8.62\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$; $\lambda_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{nm} 248,274,328$ and $414(\log \varepsilon 3.29,3.81,3.75$ and $3.38) ; m / z(\mathrm{El}, \%) 266\left(\mathrm{M}^{+}, 7\right), 123(15), 105(12), 78(54), 77(24)$, 53 (21), 52 (34) and 51 (100) (Found: C, 70.5, H, 5.2; N, 10.2. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 70.6 ; \mathrm{H}, 5.4 ; \mathrm{N}, 10.3 \%$).
2-Benzoyl-1-methyl-4-quinolone 4i. From LDA (5 mmol) and quinolone $4 \mathrm{a}(1.24 \mathrm{mmol})$ then benzoyl chloride (2.5 mmol), and after normal work up and column chromatography elution with chloroform gave the ketone $\mathbf{4 i}\left(54 \mathrm{mg}, 17 \%\right.$), m.p. $154{ }^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{O}\right), v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1700,1620,1600,1500$ and $1470 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 6.34(1 \mathrm{H}, 3-\mathrm{H})$, $7.48-7.60\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.65-7.83(2 \mathrm{H}, \mathrm{m}$, $7-\mathrm{H}$ and $8-\mathrm{H}), 7.98\left(2 \mathrm{H}, \mathrm{dd}, J 7.9,1.4,2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$ and 8.50 $(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.5,5-\mathrm{H}) ; m / z(\mathrm{Cl}, \%) 281\left(\mathrm{M}+\mathrm{H}_{4} \mathrm{~N}^{+}, 7\right), 280$ (26), 264 (M + 1, 7), 263 (22), 197 (100), 188 (41), 181 (23), 177 (61), 160 (23), 118 (52) and 101 (44) (Found: C. 64.8; H, 5.9; N, 4.7. $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 64.3 ; \mathrm{H}, 6.0 ; \mathrm{N}, 4.4 \%$).

1-Methyl-2-nicotinoyl-4-quinolone 4j. From LDA (1 mmol) and quinolone $4 \mathrm{a}(0.62 \mathrm{mmol})$ then nicotinoyl chloride (2.5 mmol), following the general procedure and after purification by column chromatography elution with chloroform gave the ketone $4 \mathrm{j}\left(41 \mathrm{mg}, 25 \%\right.$), as an oil, $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1670,1630$, 1600 and $1580 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 6.34$ $(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.40-7.60\left(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 5-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.81(1 \mathrm{H}$, dd, $J 8.0,7.5,7-\mathrm{H}), 8.30\left(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.8,4^{\prime}-\mathrm{H}\right), 8.51(1 \mathrm{H}, \mathrm{d}, J$ $8.0,5-\mathrm{H}), 8.92\left(1 \mathrm{H}, \mathrm{d}, J 4.3,6^{\prime}-\mathrm{H}\right)$ and $9.19\left(1 \mathrm{H}, \mathrm{d}, J 1.8,2^{\prime}-\mathrm{H}\right)$; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 237$ and $318(\log \varepsilon 5.92$ and 4.95$) ; m / z(\mathrm{Cl}, \%)$ 265 (M + 1, 13), 264 (67), 236 (22), 235 (49), 207 (17), 132 (15), 130 (14), 106 (70), 98 (49) and 78 (100) (Found: C, 67.9; H, 5.1; N, 9.5. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 68.1 ; \mathrm{H}, 5.0 ; \mathrm{N}, 9.9 \%$).

2-Hydroxymethyl-1-methyl-4-quinolone 4k. From LDA (2.31 $\mathrm{mmol})$ and quinolone $4 \mathrm{a}(0.77 \mathrm{mmol})$ then bubbling an excess of gaseous formaldehyde there was obtained, after column chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (95:5), 2-hydroxymethyl-1-methyl-4-quinolone $4 \mathbf{k}$ ($58 \mathrm{mg}, 40 \%$), m.p. $190-192{ }^{\circ} \mathrm{C}$ (from $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{O}$), $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3200$, 1610,1590 and $1495 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}\right.$, $\left.\mathrm{CDCl}_{3}\right) 3.78$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}$), $4.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.30(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.42(1 \mathrm{H}, \mathrm{ddd}, J 8.0,7.6,0.9$, $6-\mathrm{H}), 7.54$ ($1 \mathrm{H}, \mathrm{dd}, J 8.5,0.9,8-\mathrm{H}$), 7.70 (1 H , ddd, $J 8.5,7.6,1.5$, $7-\mathrm{H}$) and 8.31 ($1 \mathrm{H}, \mathrm{dd}, J 8.0,1.5,5-\mathrm{H}$); $\lambda_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 242$, 327 and $340(\log \varepsilon 3.69,3.43$ and 3.49); m / z ($\mathrm{El}, \%$) 190 (4); 189 $\left(\mathrm{M}^{+}+31\right), 161$ (13), 144 (44), 77 (24) and 51 (20) (Found: C, 66.9; $\mathrm{H}, 5.8 ; \mathrm{N}, 6.6 . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires: $\mathrm{C}, 66.7 ; \mathrm{H}, 6.1 ; \mathrm{N}$, 7.0%).
2-(1-Hydroxy-1-phenylethyl)-1-methyl-4-quinolone 4I and 3-(1-hydroxy-1-phenylethyl)-1-methyl-4-quinolone 4m. From LDA (1.25 mmol) and quinolone $4 \mathrm{a}(0.62 \mathrm{mmol})$ then acetophenone (3.2 mmol) following the general procedure and after purification by column chromatography, elution with CHCl_{3} gave the oily alcohol $\mathbf{4 m}(36 \mathrm{mg}, 20 \%), v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3300,1610,1550,1530$ and $1480 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.86(3$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 6.90(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 7.10-7.60$ ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.56(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.70(1 \mathrm{H}, \mathrm{ddd}, J 8.0,7.5,1.5$, $7-\mathrm{H}$) and $8.42(1 \mathrm{H}, \mathrm{dd}, J 8.5,1.0,5-\mathrm{H}) ; \lambda_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 244$, 252, 279, 291, 329 and $344(\log \varepsilon 4.35,4.31,3.70,3.68,4.07$ and 4.15); m / z (Found: C, 69.9; $\mathbf{H}, 6.4 ; \mathrm{N}, 4.3 . \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 69.9 ; \mathrm{H}, 6.6 ; \mathrm{N}, 4.5 \%$), and on elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (95:5) the isomeric alcohol $4 \mathrm{II}(56 \mathrm{mg}$, 31%) was obtained, m.p. $240-242{ }^{\circ} \mathrm{C}$ (from $\mathrm{Me}_{2} \mathrm{CO}-\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{O}$), $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3350,1620,1610$ and $1490 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 3.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 6.50(1 \mathrm{H}, \mathrm{br}$,
$\mathrm{OH}), 6.71$ ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.79(1 \mathrm{H}, \mathrm{dd}, J 8.7,1.9,8-\mathrm{H}), 7.20-7.32$ $(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.18(1 \mathrm{H}, \mathrm{dd}, J 7.0,1.8,5-\mathrm{H})$; $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 246,253,328$ and $340(\log \varepsilon 4.36,4.38,4.06$ and 4.13); $m / z(\mathrm{El}, \%) 279\left(\mathrm{M}^{+}, 13\right), 159(28), 121(13), 89(25)$, 77 (19), 75 (45), 51 (25) and 43 (100) (Found: C, 72.0; H, 5.8; N, 4.3. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 72.2 ; \mathrm{H}, 6.2 ; \mathrm{N}, 4.3 \%$).

2-[Hydroxy(diphenyl)methyl]-1-methyl-4-quinolone $\mathbf{4 n}$. From LDA (1.88 mmol) and quinolone $4 \mathbf{a}(0.62 \mathrm{mmol})$ then benzophenone (3.2 mmol) following the general procedure and after purification by column chromatography, elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (98:2) gave alcohol $4 \mathrm{n}(74 \mathrm{mg}, 35 \%$), $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3220,1620,1600$ and $1560 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 3.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 5.70(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.75-7.0(\mathrm{~m}, 2 \mathrm{H}$, $3-\mathrm{H}$ and $8-\mathrm{H}), 7.10-7.50(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $7-\mathrm{H}), 8.20(1 \mathrm{H}, \mathrm{dd}, J$ 8.0 and $1.0,5-\mathrm{H}) ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 327,340$ and $370(\log \varepsilon 4.23$, 4.21 and 2.15); $m / z(\mathrm{El}, \%) 342(16), 341\left(\mathrm{M}^{+}, 63\right), 236(29), 183$ (34), 159 (870), 130 (20), 105 (100), 78 (17) and 77 (93) (Found: C, 80.7; H, 5.8; $\mathrm{N}, 4.3 . \mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $\mathrm{C}, 80.9 ; \mathrm{H}, 5.6 ; \mathrm{N}, 4.1 \%$).

Interaction of Quinolone $\mathbf{4 a}$ with BuLi and then with Benzaldehyde; 2-Butyl-1-methyl-2,3-dihydroquinolin-4-one 7 and 2-Butyl-1-methyl-4-quinolone 4o.-A solution of quinolone $\mathbf{4 a}$ ($100 \mathrm{mg}, 0.62 \mathrm{mmol}$) in dry THF $\left(15 \mathrm{~cm}^{3}\right)$ was slowly added to a solution of $\mathrm{BuLi}\left(1.56 \mathrm{~cm}^{3}, 2.5 \mathrm{mmol}\right)$ in THF ($15 \mathrm{~cm}^{3}$) cooled at $-75^{\circ} \mathrm{C}$, and the resulting mixture maintained at this temperature for 30 min . Benzaldehyde $\left(0.31 \mathrm{~cm}^{3}, 3.1 \mathrm{mmol}\right)$ was added in one portion and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for a further 30 min and then at room temperature for 1 h . Aqueous ammonium chloride was added and the organic solvent was removed under reduced pressure. The aqueous solution was extracted with methylene dichloride and the resulting organic solution dried and evaporated. The residue was purified by column chromatography, elution with CHCl_{3} gave 2-butyl-1-methyl-2,3-dihydroquinolin-4(1H)-one $7 \quad(15 \mathrm{mg}, 11 \%$), $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1673$ and $1606 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.7-0.9(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3}\right), 1.10-2.20\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 2.80-3.20\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 3.76$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right), 4.10(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 7.43(1 \mathrm{H}$, $\mathrm{d}, J 8.8,8-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{d}, J 8.8,7-\mathrm{H})$ and $7.75(1 \mathrm{H}, \mathrm{d}, J 8.0,5-$ $\mathrm{H}) ; m / z(\mathrm{Cl}, \%) 218(\mathrm{M}+1,71), 217$ (3), 216 (14), 176 (15) and 169 (18), and 2-butyl-1-methyl-4-quinolone 40 ($49 \mathrm{mg}, 36 \%$), $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1635$ and $1575 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.97$ (3 $\left.\mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $2.81\left(2 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{CH}_{2}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 6.59(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, 7.26 (1 H , ddd, $J 8.0,7.5,1.1,6-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.1,8-\mathrm{H})$, $7.57(1 \mathrm{H}$, ddd, $J 8.0,7.5,1.1,7-\mathrm{H})$ and $7.75(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.1,5-$ $\mathrm{H}) ; \lambda_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{nm} \mathrm{216,220}$,244 and $276(\log \varepsilon 3.42,4.27,3.49$ and 3.89); $m / z(\mathrm{El}, \%) 218$ (3), $217\left(\mathrm{M}^{++}, 10\right), 174$ (43), 160 (40), $86(21), 84$ (33), 51 (32) and 49 (100); lastly, elution with $\mathrm{CHCl}_{3}-$ MeOH (97:3) gave 2-[hydroxy(phenyl)methyl]-1-methyl-4quinolone $4 \mathbf{e}(7 \mathrm{mg}, 4 \%$).

2-[Hydroxy(phenyl)methyl]-1-methylquinoline-4-thione 4p and 2-benzoyl-1-methyl-4-quinolone 4I. From LDA (1.25 $\mathrm{mmol})$ and thioquinolone $\mathbf{4 b}(0.49 \mathrm{mmol})$ then benzaldehyde (5 mmol) following the general procedure and after purification by column chromatography, elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH} 99: 1$ gave the alcohol $\mathbf{4 p}\left(55 \mathrm{mg}, 40 \%\right.$) as an oil, $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3200$, 1570,1520 and $1155 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, 5.97 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}$), $7.0-7.6(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.72(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $8.85(1 \mathrm{H}, \mathrm{dd}, J 8.2,1.5,5-\mathrm{H}) ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} \mathrm{230}, 284$ and $409(\log \varepsilon 3.46,2.84$ and 3.25$) ; m / z(\mathrm{Cl}, \%) 300\left(\mathrm{M}+\mathrm{NH}_{3}+2\right.$, 0.4), $281\left(\mathrm{M}^{\bullet+}, 1\right), 153(23), 136(19), 93$ (24) and 69 (100). After crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the hydroxythioquinolone $\mathbf{4 p}$ was converted into 2-benzoyl-1-methyl-4-quinolone 41 .

2-[1-Hydroxy(3-pyridyl)methyl]-1-methylquinoline-4-thione 4 q and 1-methyl-2-nicotinoyl-4-quinolone 4 j . From LDA (1.1 $\mathrm{mmol})$ and quinolionethione $\mathbf{4 b}(0.33 \mathrm{mmol})$ then nicotinaldehyde (2 mmol) following the general procedure and after purification by column chromatography, elution with $\mathbf{C H C l}_{3}$
gave the alcohol $\mathbf{4 q}\left(77 \mathrm{mg}, 82 \%\right.$), $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3300,1580$, 1530 and $1170 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 6.01$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}$), 7.10-7.80 (4 H, m, ArH), 8.30-8.60 (4 H, m, $\mathrm{ArH})$ and $8.82(1 \mathrm{H}, \mathrm{dd}, J 8.3,1.5,5-\mathrm{H}) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 230$, $269,283,336$ and $411(\log \varepsilon 4.38,3.89,3.90,3.15$ and 4.15$) ; m / z$ ($\mathrm{El}, \%$) $282\left(\mathrm{M}^{+}+1\right), 279$ (2), 204 (4), 174 (9), 151 (14), 134 (25), 110 (11), 93 (100), 76 (33) and 74 (56). After crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ compound $\mathbf{4 q}$ was converted into 1-methyl-2-nicotinoyl-4-quinolone 4 j .

2-(α-Hydroxy-4-methoxybenzyl)-1-methylquinoline-4-thione 4r and 2-(4-methoxybenzoyl)-1-methyl-4-quinoline 4s. From LDA (1.1 mmol) and thioquinolone $\mathbf{4 b}(0.42 \mathrm{mmol})$ then $4-$ methoxybenzaldehyde (5 mmol) following the general procedure and after purification by column chromatography, elution with CHCl_{3} gave the alcohol $4 \mathbf{r}(62 \mathrm{mg}, 46 \%)$ as an oil, $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3440,1580$ and $1140 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.96(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 6.82$ $\left(2 \mathrm{H}, \mathrm{d}, J 8.8,3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.20-7.30\left(3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.40(1 \mathrm{H}, \mathrm{dd}, J 8.0,7.5,6-\mathrm{H}), 7.54(1 \mathrm{H}$, ddd, $J 8.0,7.5,1.5$, $7-\mathrm{H}), 7.78(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $8.86(1 \mathrm{H}, \mathrm{dd}, J 7.5,1.5,5-\mathrm{H})$; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 238,313,372$ and $399(\log \varepsilon 3.12,2.76,2.23$ and 2.33); $m / z(\mathrm{El}, \%) 312$ (3), 311 ($\mathrm{M}^{\bullet+}, 2$), 134 (100), 117 (22) and $73(15)$ (Found: $\mathrm{C}, 68.0 ; \mathrm{H}, 5.4 ; \mathrm{N}, 4.1 . \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 68.1 ; \mathrm{H}, 5.6 ; \mathrm{N}, 4.4 \%$).

After dissolution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, alcohol $\mathbf{4 r}$ was converted into 2-(4-methoxybenzoyl)-1-methyl-4-quinolone $4 \mathrm{~s}, \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.34(1 \mathrm{H}, \mathrm{s}$, $3-\mathrm{H}), 7.00\left(2 \mathrm{H}, \mathrm{d}, J 9.0,3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.48(1 \mathrm{H}, \mathrm{dd}, J 8.7,7.0$, $6-\mathrm{H}), 7.56(1 \mathrm{H}, \mathrm{d}, J 8.7,8-\mathrm{H}), 7.77$ (1 H , ddd, $J 8.7,8.0,1.9,7-\mathrm{H}$), $7.95\left(2 \mathrm{H}, \mathrm{d}, J 9.0,2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$ and $8.50(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.9$, $5-\mathrm{H}) ; m / z(\mathrm{El}, \%) 294(5), 293\left(\mathrm{M}^{\bullet+}, 27\right), 292(10), 276(12), 164$ (11), 191 (14), 135 (100), 107 (11), 92 (38), 89 (28), 77 (63) and 62 (20) (Found: C, $73.5 ; \mathrm{H}, 5.0 ; \mathrm{N}, 5.0 ; \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires C, 73.7; H, 5.2; N, 4.8\%).

Acknowledgements

Financial support for some of this work was provided by the Spanish Ministerio de Educación y Ciencia, Programa de Perfeccionamiento y Movilidad de Personal Investigador (Mod. B: BE90-028) (MA), and the Acción Integrada British/Spanish Joint Research Programme (MS), awards which made possible the work carried out in Manchester, and for which we express our sincere thanks.

References

1 P. Meghani and J. A. Joule, J. Chem. Soc., Perkin Trans. 1, 1988, 1.
2 P. Meghani, O. S. Mills and J. A. Joule, Heterocycles, 1990, 30, 1121.
3 For a review of such natural products and their syntheses see M. Salas, M. Alvarez and J. A. Joule, Heterocycles, 1991, 32, 759.

4 For a ring-synthetic method see R. J. Chong, M. A. Siddiqui and V. Snieckus, Tetrahedron Lett., 1986, 27, 5323.

5 U. Bressel, A. R. Katritzky and J. R. Lea, J. Chem. Soc. B, 1971, 4. 6 S. M. Spatz, J. Am. Chem. Soc., 1941, 63, 1553.
7 H. Gilman and T. S. Soddy, J. Org. Chem., 1957, 22, 565.
8 F. Marsais, E. Bouley and G. Quéginer, J. Organomet. Chem., 1979, 171, 273.
9 F. Marsais, A. Godard and G. Quéginer, J. Heterocycl. Chem., 1989, 26, 1589.
10 J. M. Jacquelin, F. Marsais, A. Godard and G. Quéginer, Synthesis, 1986, 670.
11 Y. Robin, A. Godard and G. Quéginer, J. Heterocycl. Chem., 1987, 24, 1487; A. Godard, Y. Robin and G. Quéginer, J. Organomet. Chem., 1987, 336, 1; J. M. Jacquelin, Y. Robin, A. Godard and G. Quéginer, Can. J. Chem., 1988, 66, 1135.
12 H. Gilman and J. A. Beel, J. Am. Chem. Soc., 1951, 73, 32
13 N. S. Narasimhan, M. V. Paradkar and R. H. Alurkar, Tetrahedron, 1971, 27, 1351; N. S. Narasimhan and R. S. Mali, Tetrahedron, 1974, 30, 4153.

14 L. G. Vaughn, J. Organomet. Chem., 1980, 190, C56.
15 M. Ishikura, M. Kamada, I. Oda, T. Ohta and M. Terashima, J. Heterocycl. Chem., 1987, 24, 377.

16 J. Epszatajn, A. Bieniek, J. Z. Brzezinski and A. Jozwiak, Tetrahedron Lett., 1983, 24, 4735, and refs. cited therein.
17 H. Kondo and S. Ikawa, J. Pharm. Soc. Japan, 1931, 51, 702.

18 E. Campaigne, R. E. Cline and C. E. Kaslow, J. Org. Chem., 1950, 15, 600.

Paper 1/04750G
Received 12th September 1991
Accepted 22nd October 1991

